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Kinetic roughening of a terrace ledge

Tim Salditt and Herbert Spohn
Theoretische Physik, Ludwig-Maximilians-Universitdt, Theresienstrasse 37, 8 Miinchen 2, Germany
(Received 29 December 1992)

We study the motion of an isolated terrace ledge on a crystalline surface within the framework of the
terrace-ledge-kink model. We argue that for length scales larger than the diffusion length the step
roughness is governed by the Kardar-Parisi-Zhang (KPZ) equation that predicts a broadening as ¢!/3.
For smaller length scales a variety of possibilities are explored. Their occurrence depends sensitively on
the rates for the adsorption and desorption processes both on the terraces and at the ledge. The ledge
could be unstable, developing a fractal, dendritic type of structure. If the ledge is stable, we obtain a
crossover from a t!/¢ (conserved dynamics, model B) to a t!/* (nonconserved dynamics, model 4) and a

t'73 (KPZ) broadening.

PACS number(s): 82.20.Wt, 61.50.Cj, 05.40.+j, 68.55.Bd

I. INTRODUCTION

In a classical paper, Burton, Cabrera, and Frank (BCF)
[1] studied the motion of a terrace ledge on a vicinal crys-
tal surface. They considered an isolated step taking into
account, on the level of a continuum theory, the follow-
ing processes: (i) From the ambient atmosphere, atoms
absorb onto and desorb off the crystalline surface. (ii)
Atoms diffuse on the crystalline surface. (iii) Atoms can
attach to, respectively detach from, the ledge, diffuse
along the ledge, and stick at kink sites. BCF assumed the
ledge to be straight and to act as a perfect sink for the
atoms on the terraces. They then computed the ledge ve-
locity. The BCF theory has been extended to the cases
where the step is no longer a perfect sink and where steps
are not infinitely far apart [2].

The BCF theory does not address the atomic structure
of the ledge at all. In fact, experiments show that, under
certain conditions when growing, the ledge may develop
instabilities and is certainly not straight, even on the
average [3]. The purpose of our paper is to explore some
of the possible microstructures. Our main focus is the
roughness of the moving ledge. In particular, we will
also exhibit examples where the ledge becomes fractal on
a length scale small compared to the diffusion length.

By necessity, a microscopic model must be based on
drastic simplifications. We assume here a simple cubic
lattice with a high-symmetry surface, and imagine that
somehow a perfectly straight ledge oriented along one of
the axes has been prepared initially. The crystal step has
the height of a single atomic layer and separates a lower
from an upper terrace. In our Monte Carlo simulations,
the ledge moves upwards. Thus the upper terrace corre-
sponds to the back and the lower to the front terrace, cf.
Fig. 1. We stay within the BCF frame in assuming the
following atomistic processes: (i) On the terraces atoms
are created and disappear with certain rates. (ii) Atoms
jump to neighboring lattice sites. (iii) Atoms detach from
and attach to the ledge with given rates. Atoms jump
along the ledge, move around corners, and stick at kink
sites. Bulk overhangs are forbidden. We thereby have
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defined the terrace-ledge-kink (TLK) model, cf. Sec. II
for more details. The problem posed then is to under-
stand how in the TLK model a crystal step advances in
the course of time.

Even if we require detailed balance for the transition
rates, we still have a fairly large space of parameters, and
it is not feasible to explore ‘‘all” possibilities. First of all,
there could be nucleation on the terraces. Of course, the
ledge will then disappear. Therefore we have to restrict
ourselves to a fairly low density of adatoms on the ter-
races. The aggregation of atoms at the ledge is diffusion
limited. Thus we expect fractal, dentriticlike structures
on a scale smaller than the diffusion length. We will

FIG. 1. Typical configuration with the high-density phase
(lower half) growing towards the low-density phase (upper half)
at t=10* MCS. A 100X80 section of a 128X 128 lattice is
shown. About eight monatomic layers have grown. The im-
posed flux is F=3X10"° (site X MCS) ™!, the diffusion length
xp=26a, and the temperature BJ =7. A square represents an
occupation number 1 of a site with occupied neighbors, a dot
represents an isolated occupation number 1 (mobile adatom on
the front terrace), and a square with a dot inside corresponds to
an occupation number 2 (mobile adatom on the back terrace).
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present some examples in Sec. VI. On the other hand,
ledge diffusion has the effect to stabilize the front. There
is a regime in parameter space where the ledge remains
straight on the average (Sec. III). The ledge roughness
can then be studied within the framework of linear fluc-
tuation theory. This is carried through in Sec. IV. As
known from the work of Kardar, Parisi, and Zhang
(KPZ) [4], even for stable growth the systematic part of
the local velocity introduces nonlinearities into the equa-
tions of motion, which lead to a ¢t!/* power law for the
broadening. For a moving ledge this mechanism is in
operation and we estimate the time when it will dominate
(Sec. V).

II. THE TERRACE-LEDGE-KINK MODEL
AS A DRIVEN INTERFACE

We assume a simple cubic lattice. At sufficiently low
temperatures, bulk overhangs can be ignored. Thus we
can introduce the reference plane (aZ)? with lattice con-
stant a. At each site i€ Z?% i =(i,,i,), there is a height
variable §;=0,1,2. A height configuration {;} is abbre-
viated by {. As an example, a straight ledge along the x
axis is given by §; =0 for i, >0, {;=1 for i, <0. An ada-
tom on the back terrace would correspond to §;=2. To
each bond we associate a binding energy J. A height
configuration { has then the energy

Hy=-J E)V(§i7§j)+z§i »

(i,j

(2.1)

where (i,j) denotes a nearest-neighbor bond, and
V(0,0)=0, V(0,1)=V¥V(1,0)=0, V(0,2)=V(2,0)=0,
V(1,1)=V(1,2)=V(2,1)=1, V(2,2)=2. It will be con-
venient to have at our disposal a chemical potential u
controlling the total mass. Then
H=H,—u3y ¢ . 2.2

1

We note that (2.1) is a particular case of the two-
dimensional Blume-Emery-Griffiths model [5]. In their
notation, we have J=J/2, K=J/2, C=0, H=3J +p,
A=2J. At low temperatures, the lattice gas passes from
the pure zero-phase to the pure one-phase and the pure
two-phase as the chemical potential u is increased.

Next we introduce the dynamics, which is partly mass
conserving, partly mass nonconserving. Surface diffusion
is governed by nearest-neighbor exchanges between
heights (Kawasaki dynamics). For a given bond (i, ), the
possible exchanges are (1,0)«>(0,1), (2,0)«>(1,1),
(0,2)>(1,1), (1,2)«>(2,1). Note, this implies that the
only locally conserved quantity is the mass ¥; ;. We
denote the exchange rates by c; ;(£) and assume that they
satisfy detailed balance with respect to the energy H.
This leaves us still some freedom. In our context, a phys-
ically natural choice are the Metropolis rates. Let A; H

be the energy difference in the exchange. Then
co if A ;H(£)=0
<16 \coexpl —BA H (O] if A H(E)>0. @Y

The exchange dynamics fixes the inverse temperature 3,
but leaves the chemical potential u arbitrary. We note
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that an isolated atom on a terrace performs a random
walk with nearest-neighbor jump rate ¢, defining an in-
verse “hopping time.” Thus its diffusion coefficient is
coa 2, where a denotes the lattice constant.

The external flux from the ambient atmosphere is
modeled by a nonconserved Glauber-type dynamics. At
each site i, the possible transitions are O<>1<>2. We
denote the corresponding rates by c;(§). We imagine that
the incident flux is unrelated to the instantaneous height
configuration. Then

c¢;(§)=c for 0—1, 1 2. (2.4)

The rates for the reverse processes, 1—-0 and 2—1, are
determined by imposing detailed balance with respect to
H at inverse temperature 3. Physically, this means that
desorption processes are governed by the local energy
differences. Note that the nonconserved dynamics fixes
both the temperature and chemical potential of the lattice
gas.

To describe step flow, we must work with particular in-
itial conditions and thermodynamic parameters. First,
we adjust p=p, in H such that the zero-phase and the
one-phase coexist. We also prepare initially a perfectly
straight ledge. Then the ledge has velocity zero and
thermally roughens in the course of time. To force step
motion, we slightly increase ¢ beyond its equilibrium
value c¢,, without modifying the desorption rates.
Equivalently, we increase u somewhat beyond u, and re-
quire the nonconserved dynamics to satisfy detailed bal-
ance with respect to that u. Then the one-phase is
favored and the ledge advances into the metastable zero-
phase. Thus the TLK model can be viewed as a particu-
lar case of a driven interface. The interface moves with
constant velocity. Our goal is to understand how the in-
terface (ledge) roughens in the course of time.

Atoms on the back terrace have to cross a potential
barrier when attaching to the ledge. This is the Schwoe-
bel effect. In an idealized version, we may take this bar-
rier to be infinitely high. We are then led to the one-sided
version of the TLK model. It is constructed by means of
obvious alterations. The height variables §; take now
values 0,1. The energy is the usual nearest-neighbor Ising
energy

H=—J 3 &~ +w 3¢ . (2.5)
(i) i

By symmetry, phase coexistence is at u, = —3J. The ex-
change dynamics is of standard form. The external flux
induces the transitions 0<>1, which corresponds to spin-
flips in the magnetic language. We still impose (2.4) for
the transitions 0— 1, i.e., empty sites are filled with rate
c.

If we ignore surface diffusion by setting ¢, =0, then the
one-sided model just corresponds to an Ising interface
progressing into the metastable zero-phase. At low tem-
perature, such a dynamics is equivalent either to the
Eden model or to the polynuclear growth model, depend-
ing on the orientation of the ledge [6]. This is a well-
understood subject [7], and it is known that the width of
the ledge increases as z!/3. Thus our goal may be re-
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phrased: we try to understand how surface diffusion
modifies the interface roughness.

We should count now the number of independent pa-
rameters in the TLK model. We have (i) BJ as a dimen-
sionless inverse temperature, respectively scale of energy.
(ii) The diffusion length (x, /a)=1"c,/c,exp[ —B,J], in
units of the lattice constant, of an isolated particle on a
terrace. It measures how far the particle will diffuse be-
tween adsorption and desorption. Equivalently, it is the
ratio of conserved to nonconserved rates. (iii)
(¢ —c,)/c,, which tells us the quench off coexistence.
Clearly, many more parameters could be introduced. An
obvious physical defect is that we treat diffusion on the
terrace and along the ledge on equal footing. Once at the
ledge, how does a particle move around a corner? We
will explore some of these possibilities on a qualitative
level in Sec. VI.

We simulated the TLK model using a standard Monte
Carlo algorithm. The lattice is 128X 128 sites with
periodic boundary conditions, and time runs up to 10°
Monte Carlo sweeps (MCS). If the dynamics is imple-
mented according to the rates (2.3), (2.4), and if the flux is
so low as to prevent nucleation of islands on the terraces,
then there is too little growth of the ledge during the
available simulation time. The only way out is to
suppress nucleation on the terrace by fiat. This method
has been employed also in other Monte Carlo simulations
of such low-temperature systems [8,9]. In Fig. 1, we
show a typical configuration of the two-sided model. The
atoms on the ledge are allowed to move around a corner
into a kink site, i.e., an exchange between diagonally
neighbored sites is allowed. Besides exclusion, there is no
interaction between adatoms on the terrace.

III. THE BCF THEORY AND ITS LINEAR STABILITY

We would like to understand first under which condi-
tions the step does not develop instabilities, i.e., remains
straight on the average. This problem can be handled by
a linear stability analysis of the BCF continuum theory.
The role of the fluctuations will be discussed in Secs. IV
and V.

Let a be a smooth curve in the plane representing the

ledge. Away from the ledge, the adatom density
n =n(x,y,t) is governed by
o pan—"4F 3.1
at T

Here D is the bulk diffusion coefficient, for simplicity as-
sumed to be independent of the density, A=V? is the La-
placian, F is the imposed external flux, and 1/7 is the
desorption rate. In approximation, these constants can
be related to the microscopic rates in Sec. Il as F =c /a 2,
D =cqa? 7=(1/c,)exp[ —2BJ]. Clearly, the density at
infinity is n , =F7. We have to impose boundary condi-
tions at a. In the one-sided case, there is no flux from the
back terrace, i.e.,

f-Vn|_=0. (3.2)

Here + (—) refers to the limit from the front (back) ter-
race and # is the local normal to a. For the front terrace

the ledge is a perfect sink. Therefore, introducing the -
equilibrium density n, and imposing the Gibbs-Thomson
relation,

(n —n,—TH)|,.=0. (3.3)

K is the local curvature of the ledge «, and
I'=n,a’y /kT with ledge stiffness ¥ and equilibrium den-
sity n,. In the two-sided case, the ledge acts as a sink for
both terraces. Therefore

(n—n,—TH)|,=0. (3.4)

More generally, we could have introduced a kinetic stick-
ing rate leading to the boundary conditions

Di-Vn|,=k (n—n,—TH)|, . (3.5)

Then (3.2), (3.3) correspond to k. =0, k_ =0, and (3.4)
to k. =o0, k_=o0. Finally, the normal velocity of the
step, v,,, is determined by the conservation of mass,

v,=a’D(d-Vn|, —0-Vn|_). (3.6)

Equations (3.1) and (3.6), together with boundary con-
ditions (3.2), (3.3), respectively (3.4), determine the step
motion.

We are looking for a solution representing a perfectly
straight ledge traveling at constant velocity. This prob-
lem can be solved in full generality [2]. For our purposes,
the small-velocity approximation suffices. For the two-
sided case in a comoving frame of reference, it is given by

n,(x,y)=n_,+(n,—n,lexpl —y/xp]
if >0

no(x,y)——f (3.7)

n_ (x,y)=n_+(n,—n,lexply/xp]
if y<0.

The decay is governed by the diffusion length x, =V'Dr.
The step velocity v equals

a’D
XD

v=2

(n,—n,) . (3.8)

In the one-sided case, ny(x,y)=n_ for y <0, and the ve-
locity is one-half of that in (3.8).

We consider now a small deviation from the traveling-
front solution. The ledge is then represented by a single-
valued function 4 relative to the line {y =vt}. The densi-
ty deviation f is defined by

n(x,y tvt,t)—n. (x,y)
if y=h(x,t)

flx,y —h(x,t),t)= (3.9)

n(x,y tvt,t)—n (x,y)
if y<h(x,t).

To first order in f and A we then obtain, in the two-sided
case, the linearized equations

of _ of _f
ar DAf+vay pr (3.10)
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d%h (x,1) + Ry —H,

flx0n0=—T22 e (3.11)
af (x,0,,t) 9f(x,0_,¢t)
Bhlx,t) _ oy | 040 Of Ix (3.12)
ot ay ay

In the one-sided case, the latter equation has to be re-
placed by
oh (x,t) 22D

ot

3f (x,0,,t) n,—

e b (x,1)
ay xf, %!

(3.13)

Equations (3.10)-(3.12) are solved by the plane-wave
ansatz, h <exp[ —ikx —w(k)t]. In the quasistatic ap-
proximation, df /3t =0, we obtain the dispersion relation

o(k)=2a’DTAk?, (3.14)

with A, =(k*+1/x3)""%. For the one-sided problem,
the corresponding calculation yields

(n,—n,)

wo(k)=—a’D (Ax—1/xp)+a*DTALK?;

Xp

(3.15)
compare with [10].

The quasistatic approximation is justified in all realistic
cases, because the characteristic decay time of evolution
for the kth mode is of order (a?DT'A k%)~ ! and thus
much longer than the desorption time 7. At any moment
the density of adatoms can quickly adjust to the instan-
taneous interface configuration.

In the two-sided case the interface is always stable,
whereas in the one-sided case the dispersion relation w(k)
will become negative for small k, if

(3.16)

The Gibbs-Thomson effect can then no longer compen-

FIG. 2. Simulation of the one-sided TLK model at ¢t =2 X 10*
MCS. Only adatoms on the front terrace contribute to the
growth. The parameters F, x,, BJ, and the lattice size are the
same as in Fig. 1.
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sate the destabilizing effect of the one-sided diffusion
field. This behavior is closely related to the Mullins-
Sekerka instability with the main difference due to the
cutoff length scale x; in our problem. Letting x; ap-
proach infinity in (3.15), one obtains the Mullins-Sekerka
dispersion relation with its characteristic linear behavior
for small k. In Fig. 2, we show a typical configuration,
where the instabilities are clearly visible. In this unstable
regime individual bumps and cusps of the ledge grow
deterministically.

IV. LEDGE ROUGHENING

We consider an initially perfectly straight ledge and
would like to compute how it roughens. Clearly, in the
deterministic BCF theory the ledge will remain straight
forever, provided the parameters are in the stable regime.
Thus to have roughening, noise has to be taken into ac-
count. There are essentially three noise sources: there is
shot noise from the external flux, noise associated with
the diffusive motion on the terraces, and noise in adsorp-
tion and desorption processes from the ledge. The noise
related to the interface is small compared to the bulk
contributions. Therefore the BCF theory including noise
has the form

o (g;y’t) =DAn(x,p,0)— " (x;y’t) +F +n(x,p,1),
4.1)
together with boundary conditions (3.11), (3.12). 7% is
white noise with mean zero and covariance
(n(rl,tl )n(rz,t2)> = DFTAS(l'l~I'2)8(tl -tz)
+F8(r1_r2)8(t1_t2) . (4'2)

The first term is due to the density fluctuations on the
terraces and is therefore conservative noise, whereas the
second term models the shot noise. In fact, as will be
shown, on a long-time scale the shot noise will dominate.

We study first the influence of noise on the level of the
linearized equations. The full nonlinear problem will be
taken up in Sec. V. We linearize as in (3.10). Then

af (x,y,t) _ af (x,y,1)
ot DAf (x,y,t)+v 3

—L;_y"tl‘f“n(x,y,t)

= Af+7q. (4.3)

The linearized boundary conditions (3.11)—(3.13) remain
unchanged. The initial conditions are A =0, f =0. We
have to compute (4 (x,t)?) for large ¢, where, for the
sake of concreteness, we consider the two-sided case. For
notational simplicity, the constants a, D, and I are set to
unity and will be reintroduced in the final result, Eq.
(4.20) below.

The boundary condition (3.11) can be satisfied by an
additional source at y =0 in the form [11]
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—a—f (x,,1)

3t =Af(x,p,t

+8(y)—h(x t)+n(x,p,t) .

(4.4)

Let G(xy,p;,t|x5,¥,,5) be the Green’s function for
of /9t =A f without boundary conditions. Then, for
f (t =0)=0, the solution to (4.4) reads

f(xl,yuﬂ:fotdefdxzdyzG(xl,yl,tlxpyps)

3
8(y2)gh (x3,5)

+n(x,,y,,8) (4.5)

Adding the limits y; —0,, y; —0_, and using the second
boundary condition (3.12), we obtain

d? t
ah(xl,t)=fodsffdxzdyzG(xl,O,t]xz,yz,s)

d
X a(yZ)gh(xz,s)
+77(x2»)’2as)] , (4.6)
and its Fourier transform
—kziz\ k,t)= td d —[k2+g%—ivg +(1/7))(t —5)
(k,t) fo sf ge
S Pk + 9k, g,5) @7
as ’ 77 ’q? ) .

where k and g are the conjugate variables to x and y, re-
J

(Rl TR, 01* Y =8(k —k" N>+ k) [ "dse

The integrations in (4.14) can be carried out analytically
[12]. Rather than reproducing this somewhat lengthy
formula, we note some reasonable approximations. First,
the continuum theory is valid only for ka <<1, e.g., for
wavelengths much greater than the lattice constant, and
for times t >>7, when the deterministic solution has be-
come stationary In addition,
2 —_ 1
v 4

where the BCF velocity v =(F —F,)V't has been insert-
ed. With these approximations, we obtain

%[1+O(FT)2] , (4.15)

, \_ T Fr
Ak, 0)[ Ak, 0)]* )= 8(k —k' 2
X {1—exp[ —2k%(k2+1/x3)"%t]} .

(4.16)

— kAP ROV 2t —s)) 1 — kAP EDV 20—
f ds,e
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spectively. To solve for &, we take the Laplace trans-

form. Then, using that A (k,0)=0, we get
k24 z h(k,z)=—(k,z), (4.8
[z + (A + k)72 plhoz
where we introduced the shorthand
5 1/2
vi= [Z+— (4.9)
: 2 . .
Equivalently, in real time
hk,t)y=— ['ds a(t —s)P(k,s) , .
(k,t)=—= [ ds alt =)(k,s) (4.10)

with
~ t 2, 2
k,t .= d d —[k“+g“—ivg +(1/7)](zt —s5)
dik,0):= [ ds [ dg e
Xn(k,q,s) .

a(t) is a memory function, which is defined implicitly by
-1
2 V4

dt e “alt)=
f e )= [Z+(V2+k2)]1/2

(4.11)
After these preparations, we are able to calculate the

height-height correlations

Rk, )[Rk, t]* )—fdslat—s,)f ds,[a(t —s,)]*

XYk, s [Pk’ s,)]*) .

If ka << 1, which is the case for a scale much greater than
the lattice constant, the memory function can be approxi-
mated by

a(t)=(?+k?)%exp|
Thus

4.12)
— k224K

(4.13)

T ks K 55) )

(4.14)
I
Transforming back to real space,
(h(x,0?) = [dk [ dk' (KU, D[Rk, 1)]* e,k
= [dk([A(k,0]?) . @.17)

There are two limiting cases. If r <<1/2|k|?, we rescale
as k:=kt'/3. Then
—2[«*]) . 4.18)

(h(x,0)]? >"t1/3ﬂF fdk (1—exp

For longer times t>>1/2|k|%, we rescale as «:=kt!/%

Then

([h(x,n]?)=112T F’rde (1—exp[ —2vk?]) .

(4.19)

We repeat the full result with the constants a, D, and I’
reinserted,
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2
2y ma'Fr
([h(x,)]*) 5T

The ledge roughening is governed by two power laws
with exponent ¢ for small times and exponent 1 for long
times. The crossover occurs approximately at

(4.21)

when the wavelength of typical interface fluctuations has
grown up to the order of the diffusion length. The ex-
ponents 1 and | can be understood as the signatures of
the conserved and nonconserved dynamics, respectively.
It is known that in an Ising model with conserved dy-
namics (model B), the fluctuations of an initially straight
interface increase to its stationary value according to a
t1/¢law [13]. Thus we have

(h(x,0?) <t
with the scaling exponent
L for t <<t

6
ﬁ=i
4

for t >t .

If we consider the stationary interface width for a sample
of length L, we obtain random-walk-like fluctuations,

2
lim (h(x,0)2), =2 9L7

L. 4.22
t— o0 2 F ( )

For Fr=n,, the prefactor is the same as in a solid-on-
solid (SOS) model for the thermal roughness of a single
ledge [14]. In comparison to the equilibrium, this prefac-
tor increases or decreases depending on whether there is
a positive or negative growth velocity, respectively.

Our result (including the prefactor) agrees with the one

o
O S

£
o
=
" b)
= o a)
0.1 T T T
10 100 1000 10000
Mcnte Carlo sweeps
FIG. 3. Broadening of the interface  width

[(h(£)*)—(h(t))?]'/? for an initially straight interface. (a)
Conserved dynamics only (zero external flux, no desorption) at
BJ =2.5 on a 48X48 lattice. The average is over 500 runs. (b)
Mixed dynamics at F=7X10"*(site XMCS)"!, x, =4a, and
BJ =3 on a 64X 96 lattice. The average is over 150 runs.

fdk%{1—exp[—2Da2rk2(k2+1/x5>1/2z]} .
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(4.20)

f

obtained by Uwaha and Saito [15]. They added white
noise to the deterministic dispersion relation (3.15), as-
suming the noise spectrum to be that of equilibrium. In
contrast to their approach, we have shown that the inter-
face fluctuations can be calculated directly from a noisy
BCEF theory.

In the Monte Carlo simulations, because of limited
computation time, we could not verify the crossover as
predicted by the linearized theory. However, we can ad-
just the parameters in such a way as to separately observe
at'/® and a t!/* behavior after an initial regime; see Fig.
3.

V. NONLINEAR THEORY

To understand the limitations of the linearized noisy
BCF theory, it is useful to consider again our result (4.16)
for ¢ >t, when the fluctuations increase as t!/*. Equa-
tion (4.19) is the solution of an effective Edward-
Wilkinson equation [16]

2
Ohx) _ Da'T \p(x)+mix,t) (5.1)
ot Xp
with noise correlator
4
(n(xl,tl )n(xz,tz ) ) = %8()‘1 _'xZ)S(tl _tz) .
D
(5.2)

This equation can be derived also phenomenologically
simply by adding Gaussian white noise to a deterministic
normal ledge velocity, which is proportional to the local
curvature. Thus on a coarsened scale, t >>¢_,, kxp, <<1,
the ledge motion is governed by a local equation.

From the work of KPZ [4], we know that the tilting of
the ledge introduces a relevant nonlinearity that modifies
the long-time scaling behavior. Thus, in a comoving
frame, Eq. (5.2) has to be augmented to

%Lg—[vmx,z)]uazsh(x,t)+n(x,t). (5.3)
Here o=Da’T'/x, and the noise has strength

N =a*DF1/x. For small tilt we expect the growth ve-
locity to be isotropic. In this case [4] predicts A=v, the
BCF velocity. The nonlinearity in the KPZ equation
(5.3) gives rise to a crossover from a t!/* to a ¢!/
broadening.

To estimate the crossover time, tyxpy, We equate the
linear and nonlinear terms of (5.3) for a typical fluctua-
tion [17]. Let us take an interface perturbation of the
form h (x)=e€sinkx. Then

A
2
These terms are of the same order provided e=20 /A.
Computing the initial increase of the amplitude € accord-

(Vh )2=%k262(coskx)2, oAh = —ok?esinkx .
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FIG. 4. Kinetic roughening in the nonlinear regime. The in-
terface width is an average over 150 runs on a 64X 96 lattice at
F=7X10"*(site XMCS)™!, x;, =8a, and BJ =4.5. After an in-
itial regime with small oscillations corresponding to the growth
of a monatomic row, the roughening follows a ¢!/3 power law
according to the KPZ theory.

ing to (5.1), we obtain a rough estimate for the crossover
time

_ 1 160°
tKPZ_FT . (5.4)
Inserting from (5.3) and A=v, we obtain
16I°
tKPZ =T (5.5)

a®F —F,)*Fx,,

In Fig. 4, we have chosen the model parameters such
that tgpy =~7. Clearly, we cannot distinguish a regime de-
scribed by the linearized theory, but have directly the
transition to a KPZ-governed ¢!/ increase in the rough-
ness. The small initial oscillations reflect the growth of
single atomic layers.

VI. INSTABILITIES

We have seen that the one-sided TLK model becomes
linearly unstable, if the high-flux condition (3.16) is
satisfied. The dispersion relation w(k) of the linear BCF
theory is then negative for 0<k =<k,. To access the
long-time behavior, one therefore has to use the full non-
linear BCF theory. We expect that the instabilities are
cut off on a length scale larger than the diffusion length
Xxp. On this scale, the KPZ mechanism is again in opera-
tion and one should see a roughening according to a ¢!/3
law. However, in contrast to the stable case, there is no
simple way to compute the coefficients A and o in Eq.
(5.3) on a microscopic basis and to estimate thereby the
crossover time #ypy.

So far we have always assumed that the hopping along
the ledge is governed by the same rates as on the terraces.
If we give up this restriction fractal structures can be
easily produced. Such structures have been reported in
scanning-tunneling-microscopy (STM) experiments [18].
Let us first consider the extreme case where ledge
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FIG. 5. Growth aggregate of a hit-and-stick process with pa-
rameters ¢t =8000 MCS, F=1.25X10"*(site XMCS)"!, and
xp=20a.

diffusion and desorption from the ledge are completely
suppressed. Then atoms that hit the ledge will stick at
the first site of contact. In Fig. 5, we show a typical
configuration. To gain in computation time in this simu-
lation, we actually followed the motion of individual par-
ticles. On the terrace the atoms are only subject to ex-
clusion. We observe an aggregate with many voids and
overhangs similar to the fractal geometry of diffusion-
limited aggregation (DLA) [19]. However, in contrast to
diffusion-limited aggregation, here we have a finite densi-
ty and the additional length scale x, cutting off the frac-
tal geometry at larger scales.

Next let us increase somewhat the temperature. Then,
just as adatoms on the terrace, atoms on the ledge per-
form an activated hopping process until they become
finally immobilized by additional bonds to a kink site or
to other diffusing atoms (nucleation on the ledge). How-
ever, we still assume the temperature to be low enough as
to neglect all detachment from the ledge. The microscop-

FIG. 6. One-sided ledge diffusion at the same parameters as
in Fig. 5.
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ic rules of ledge diffusion can change the ledge geometry
in a drastic way. In analogy to the Schwoebel effect, we
should distinguish the case of one- and two-sided attach-
ment to the kink. Corresponding to the activation ener-
gies involved, moving around a corner into a kink might
be kinetically blocked or not. In Fig. 6, the case of one-
sided ledge diffusion is seen to give rise to intrinsic insta-
bilities. If, on the other hand, jumps around a corner are
admitted, then the ledge is essentially straight. Visually,
a typical configuration cannot be distinguished from Fig.
1, which shows the case where desorption from the ledge
is allowed.

VII. CONCLUSION

A crystal step moves by acquiring mass from a
diffusive density field. This is an intrinsically unstable sit-
uation, since bumps and protuberances have the tendency
to grow faster than pieces of the step, which lag behind.
We identified two mechanisms that nevertheless suppress
the fractal structure and maintain the ledge to be essen-
tially straight. At sufficiently high temperatures, the
dominant smoothening process is desorption from the
ledge onto the terrace. Also, two-sided adsorption is
more stabilizing than one-sided adsorption. At lower
temperatures, the only mechanism in operation is ledge
diffusion. We noted the importance of the “one-
dimensional Schwoebel effect.” If corner sites are kineti-

cally blocked, ledge diffusion is effectively suppressed and
the ledge grows unstable. If the ledge is stable, we can in-
vestigate the long-wavelength fluctuations by means of
the noisy BCF theory. We obtain the standard signa-
tures: the roughness increases as ¢!/ (conserved dynam-
ics), t!/# (nonconserved dynamics), and eventually crosses
over to t!/* (KPZ). The various regimes depend sensi-
tively on the choice of the kinetic rates. In fact, numeri-
cally the ¢!/3 growth is the most easily accessible one.

In our problem there is a cutoff by the diffusion length
xp. If one coarsens on that scale, then all the effects due
to the diffusive dynamics are averaged out and absorbed
into effective rates unconstrained by a conservation law.
In particular, on the scale x,, the ledge moves as in a
nonconservative model. This implies that on larger scales
the crystal step is governed by the KPZ equation, with
effective coefficients depending on the precise microstruc-
ture.

From a theoretical point of view, it is most striking
that the large variety of possible phenomena can be cap-
tured already by a two-dimensional Ising model with
mixed Glauber and Kawasaki dynamics.
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